

Lecture 18: Cohomology and Universal Coefficient Theorem

Cohomology

R refers to a commutative ring in this section.

Definition

A cochain complex over R is a sequence of R-module maps

$$\cdots \to C^{n-1} \stackrel{d_{n-1}}{\to} C^n \stackrel{d_n}{\to} C^{n-1} \to \cdots$$

such that $d_n \circ d_{n-1} = 0$. When R is not specified, we mean cochain complex of abelian groups (i.e. $R = \mathbb{Z}$).

Sometimes we just write the cochain complex by (C^{\bullet}, d) . Then

$$d_n = d|_{C_n}$$
 and $d^2 = 0$.

Given a cochain complex (C^{\bullet}, d) , its *n*-cocycles Z^n and *n*-coboundaries B^n are

$$\label{eq:Zn} \textit{Z}^{\textit{n}} = \mathrm{Ker}(\textit{d}:\textit{C}^{\textit{n}} \rightarrow \textit{C}^{\textit{n}+1}), \quad \textit{B}^{\textit{n}} = \mathrm{Im}(\textit{d}:\textit{C}^{\textit{n}-1} \rightarrow \textit{C}^{\textit{n}}).$$

 $d^2 = 0$ implies $B^n \subset Z^n$. We define the *n*-th cohomology group by

$$\mathrm{H}^n(\mathcal{C}^{\bullet},d):=rac{Z^n}{B^n}=rac{\ker(d_n)}{\mathrm{im}(d_{n-1})}.$$

A cochain complex C^{\bullet} is called acyclic or exact if

$$H^n(C^{\bullet}) = 0$$
 for all n .

Let (C_{\bullet}, ∂) be a chain complex over R, and G be a R-module. We define its dual cochain complex $(C^{\bullet}, d) = \operatorname{Hom}_{R}(C_{\bullet}, G)$ by

$$\cdots \operatorname{Hom}_{R}(C_{n-1},G) \to \operatorname{Hom}_{R}(C_{n},G) \to \operatorname{Hom}_{R}(C_{n+1},G) \to \cdots$$

Here given $f \in \operatorname{Hom}_R(C_n, G)$, we define

$$d_n f \in \operatorname{Hom}_R(C_{n+1}, G)$$

by

$$d_n f(c) := f(\partial_{n+1}(c)), \quad \forall c \in C_{n+1}.$$

Let G be an abelian group and X be a topological space. For $n \ge 0$, we define the group of singular n-cochains in X with coefficient in G to be

$$S^n(X;G) := \operatorname{Hom}(S_n(X),G).$$

The dual cochain complex $S^{\bullet}(X; G) = \operatorname{Hom}(S_{\bullet}(X), G)$ is called the singular cochain complex with coefficient in G. Its cohomology is called the singular cohomology and denoted by

$$\mathrm{H}^n(X;G):=\mathrm{H}^n(S^{\bullet}(X;G)).$$

When $G = \mathbb{Z}$, we simply write it as $H^n(X)$.

We have the analogue of chain homotopy between cochain complexes.

Theorem

 $\mathrm{H}^n(-;G)$ defines a contra-variant functor

$$H^n(-; G) : \underline{\mathbf{hTop}} \to \underline{\mathbf{Ab}}.$$

Theorem (Dimension Axiom)

If X is contractible, then

$$H^{n}(X; G) = \begin{cases} G & n = 0\\ 0 & n > 0 \end{cases}$$

Lemma

Let G be a R-module and $0 \to A_1 \to A_2 \to A_3 \to 0$ be an exact sequence of R-modules. Then the following sequence is exact

$$0 \to \operatorname{Hom}_{R}(A_{3}, G) \to \operatorname{Hom}_{R}(A_{2}, G) \to \operatorname{Hom}_{R}(A_{1}, G).$$

If A_3 is a free R-module (or more generally projective R-module), then the last morphism is also surjective.

Let G be an abelian group. Let $A \subset X$ be a subspace. We define the relative singular cochain complex with coefficient in G by

$$S^{\bullet}(X,A;G):=\operatorname{Hom}(S_{\bullet}(X)/S_{\bullet}(A),G).$$

Its cohomology $H^{\bullet}(X, A; G)$ is called the relative singular cohomology.

Since $S_{\bullet}(X)/S_{\bullet}(A)$ is a free abelian group, we have a short exact sequence of cochain complex

$$0 \to S^{\bullet}(X, A; G) \to S^{\bullet}(X; G) \to S^{\bullet}(A; G) \to 0$$

which induces a long exact sequence of cohomology groups

$$0 \to \mathrm{H}^0(X,A;G) \to \mathrm{H}^0(X;G) \to \mathrm{H}^0(A;G) \to \mathrm{H}^1(X,A;G) \to \cdots.$$

Moreover, the connecting maps

$$\delta: \mathrm{H}^n(A, G) \to \mathrm{H}^{n+1}(X, A; G)$$

is natural in the same sense as that for homology.

Theorem (Excision)

Let $U \subset A \subset X$ be subspaces such that $\overline{U} \subset A^{\circ}$ (the interior of A). Then the inclusion $i: (X-U,A-U) \hookrightarrow (X,A)$ induces isomorphisms

$$i^*: \mathrm{H}^n(X,A;G) \simeq \mathrm{H}^n(X-U,A-U;G), \quad \forall n.$$

Theorem (Mayer-Vietoris)

Let X_1, X_2 be subspaces of X and $X = X_1^{\circ} \cup X_2^{\circ}$. Then there is an exact sequence

$$\cdots \to \operatorname{H}^n(X; G) \to \operatorname{H}^n(X_1; G) \oplus \operatorname{H}^n(X_2; G) \to \operatorname{H}^n(X_1 \cap X_2; G) \to \operatorname{H}^{n+1}(X; G) \to \cdots$$

Universal Coefficient Theorem for Cohomology

Let M, N be two R-modules. Let $P_{\bullet} \to M$ be a free R-module resolution of M:

$$\cdots P_n \to P_{n-1} \to \cdots P_1 \to P_0 \to M \to 0$$

is an exact sequence of R-modules and P_i 's are free.

We define the Ext group

$$\operatorname{Ext}_{R}^{k}(M,N) = \operatorname{H}^{k}(\operatorname{Hom}(P_{\bullet},N))$$

and the Tor group

$$\operatorname{Tor}_{k}^{R}(M, N) = \operatorname{H}_{k}(P_{\bullet} \otimes_{R} N).$$

Note that

$$\operatorname{Ext}^0_R(M,N) = \operatorname{Hom}_R(M,N), \quad \operatorname{Tor}^R_0(M,N) = M \otimes_R N.$$

 Ext and Tor are called the derived functors of Hom and \otimes .

It is a classical result in homological algebra that $\operatorname{Ext}_R^k(M,N)$ and $\operatorname{Tor}_k^R(M,N)$ do not depend on the choice of resolutions of M. They are functorial with respect to both variables and Tor_k^R is symmetric in two variables

$$\operatorname{Tor}_k^R(M,N) = \operatorname{Tor}_k^R(N,M).$$

Moreover, for any short exact sequence of *R*-modules

$$0 \to M_1 \to M_2 \to M_3 \to 0,$$

there are associated long exact sequences

$$0 \to \operatorname{Hom}_{R}(M_{3}, N) \to \operatorname{Hom}_{R}(M_{2}, N) \to \operatorname{Hom}_{R}(M_{1}, N)$$

$$\to \operatorname{Ext}_{R}^{1}(M_{3}, N) \to \operatorname{Ext}_{R}^{1}(M_{2}, N) \to \operatorname{Ext}_{R}^{1}(M_{1}, N)$$

$$\to \operatorname{Ext}_{R}^{2}(M_{3}, N)) \to \operatorname{Ext}_{R}^{2}(M_{2}, N) \to \operatorname{Ext}_{R}^{2}(M_{1}, N) \to \cdots$$

$$0 \to \operatorname{Hom}_{R}(N, M_{1}) \to \operatorname{Hom}_{R}(N, M_{2}) \to \operatorname{Hom}_{R}(N, M_{3})$$

$$\to \operatorname{Ext}_{R}^{1}(N, M_{1}) \to \operatorname{Ext}_{R}^{1}(N, M_{2}) \to \operatorname{Ext}_{R}^{1}(N, M_{3})$$

$$\to \operatorname{Ext}_{R}^{2}(N, M_{1})) \to \operatorname{Ext}_{R}^{2}(N, M_{2}) \to \operatorname{Ext}_{R}^{2}(N, M_{3}) \to \cdots$$

and

$$\cdots \to \operatorname{Tor}_{2}^{R}(M_{1}, N) \to \operatorname{Tor}_{2}^{R}(M_{2}, N) \to \operatorname{Tor}_{3}^{R}(M_{3}, N)$$
$$\to \operatorname{Tor}_{1}^{R}(M_{1}, N) \to \operatorname{Tor}_{1}^{R}(M_{2}, N) \to \operatorname{Tor}_{1}^{R}(M_{3}, N)$$
$$\to M_{1} \otimes_{R} N \to M_{2} \otimes_{R} N \to M_{3} \otimes_{R} N \to 0$$

Now we focus on the case of abelian groups $R=\mathbb{Z}$. For any abelian group M, let P_0 be a free abelian group such that $P_0\to M$ is surjective. Let P_1 be its kernel. Then P_1 is also free and

$$0 \to P_1 \to P_0 \to M \to 0$$

defines a free resolution of abelian groups. This implies that

$$\operatorname{Ext}^k(M, N) = 0$$
, $\operatorname{Tor}_k(M, N) = 0$ for $k \ge 2$.

For abelian groups we will simply write

$$\operatorname{Ext}(M,N) := \operatorname{Ext}_{\mathbb{Z}}^{1}(M.N), \quad \operatorname{Tor}(M,N) := \operatorname{Tor}_{1}^{\mathbb{Z}}(M,N).$$

Lemma

If either M is free or N is divisible, then $\operatorname{Ext}(M, N) = 0$.

Proposition

Let (C_{\bullet},∂) be a chain complex of free abelian groups, then there exists a split exact sequence

$$0 \to \operatorname{Ext}(\operatorname{H}_{n-1}, \operatorname{G}) \to \operatorname{H}^n(\operatorname{Hom}(\operatorname{C}_{\bullet}, \operatorname{G})) \to \operatorname{Hom}(\operatorname{H}_n, \operatorname{G}) \to 0$$

which induces isomorphisms

$$\mathrm{H}^n(\mathrm{Hom}(\mathit{C}_\bullet,\mathit{G})) \simeq \mathrm{Hom}(\mathrm{H}_n(\mathit{C}_\bullet),\mathit{G}) \oplus \mathrm{Ext}(\mathrm{H}_{n-1}(\mathit{C}_\bullet),\mathit{G})$$

Let B_n be n-boundaries and Z_n be n-cycles, which are both free. We have exact sequences

$$0 \to B_n \to Z_n \to H_n \to 0, \quad 0 \to Z_n \to C_n \to B_{n-1} \to 0.$$

This implies exact sequences

$$0 \to \operatorname{Hom}(\mathcal{H}_n, G) \to \operatorname{Hom}(Z_n, G) \to \operatorname{Hom}(B_n, G) \to \operatorname{Ext}(\mathcal{H}_n, G) \to 0$$

and the split exact sequence

$$0 \to \operatorname{Hom}(B_{n-1}, G) \to \operatorname{Hom}(C_n, G) \to \operatorname{Hom}(Z_n, G) \to 0.$$

Consider the commutative diagram with exact columns

Diagram chasing shows this implies a short exact sequence

$$0 \to \operatorname{Ext}(H_{n-1}, G) \to \operatorname{H}^n(\operatorname{Hom}(C_{\bullet}, G)) \to \operatorname{Hom}(H_n, G) \to 0$$

which is also split due to the split of the middle column.

Theorem (Universal Coefficient Theorem for Cohomology)

Let G be an abelian group and X be a topological space. Then for any $n \ge 0$, there exists a split exact sequence

$$0 \to \operatorname{Ext}(\operatorname{H}_{n-1}(X), \operatorname{G}) \to \operatorname{H}^n(X; \operatorname{G}) \to \operatorname{Hom}(\operatorname{H}_n(X), \operatorname{G}) \to 0$$

which induces isomorphisms

$$\mathrm{H}^n(X;\mathcal{G})\simeq\mathrm{Hom}(\mathrm{H}_n(X),\mathcal{G})\oplus\mathrm{Ext}(\mathrm{H}_{n-1}(X),\mathcal{G}).$$

Proof.

Apply the previous Proposition to
$$C_{\bullet} = S_{\bullet}(X)$$
.

Universal Coefficient Theorem for homology

Let G be an abelian group. Let $A \subset X$ be a subspace. We define the relative singular chain complex with coefficient in G by

$$S_{\bullet}(X,A;G) := S_{\bullet}(X,A) \otimes_{\mathbb{Z}} G.$$

Its homology is called the relative singular homology with coefficient in G, denoted by $H_{\bullet}(X,A;G)$. When $A=\emptyset$, we simply get the singular homology $H_{\bullet}(X;G)$.

Similar long exact sequence for relative singular homologies follows from the short exact sequence

$$0 \to S_{\bullet}(A;G) \to S_{\bullet}(X;G) \to S_{\bullet}(X,A;G) \to 0.$$

Theorem (Universal Coefficient Theorem for homology)

Let G be an abelian group and X be a topological space. Then for any $n \ge 0$, there exists a split exact sequence

$$0 \to \mathrm{H}_n(X) \otimes G \to \mathrm{H}_n(X;G) \to \mathrm{Tor}(\mathrm{H}_{n-1}(X),G) \to 0$$

which induces isomorphisms

$$H_n(X; G) \simeq (H_n(X) \otimes G) \oplus Tor(H_{n-1}(X), G).$$